

# MIN Boya

+86 13186121617 | minboya@stu.xjtu.edu.cn | 1997.6.17 | Female

## EDUCATION

|                                                                                                                                                                                                                                                                                           |                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| <b>Xi'an Jiaotong University (C9)</b><br><i>Master of Power engineering &amp; Engineering Thermophysics</i>                                                                                                                                                                               | <b>Xi'an, China</b><br><b>2019.9 - 2022.6</b> |
| <ul style="list-style-type: none"><li>• <b>Supervisor:</b> Prof. GUO, Liejin &amp; Prof. LIU, Maochang</li><li>• <b>Cumulative GPA:</b> 3.63/4.0</li><li>• <b>Thesis Title:</b> Synthesis of Multielemental Transition Metal Chalcogenides for Electrocatalytic Water Splitting</li></ul> |                                               |

  

|                                                                                                                                                                                                                                                                                                                                |                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| <b>Southeast University (Project 985)</b><br><i>Bachelor of Chemical Engineering &amp; Technology</i>                                                                                                                                                                                                                          | <b>Nanjing, China</b><br><b>2015.9 - 2019.9</b> |
| <ul style="list-style-type: none"><li>• <b>Supervisor:</b> Prof. ZHOU, Jiancheng</li><li>• <b>Cumulative GPA:</b> 3.74/4.0, <b>Ranking:</b> 3/26</li><li>• <b>Thesis Title:</b> Synthesis and Mechanistic Study of Magnesium-Doped g-C<sub>3</sub>N<sub>4</sub> for Enhanced Photocatalytic CO<sub>2</sub> Reduction</li></ul> |                                                 |

## WORK EXPERIENCE

|                                                                                                                                                                |                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| <b>BYD Auto, Institute of Advanced Technology</b><br><i>Senior Battery Management System Engineer</i>                                                          | <b>Xi'an, China</b><br><b>2022.7 - Present</b>    |
| <b>City University of Hong Kong Shenzhen Research Institute</b><br><i>Research Assistant (Part Time, Supervisor: Dr. Luoxiao YANG, School of Data Science)</i> | <b>Shenzhen, China</b><br><b>2024.7 - Present</b> |

## RESEARCH INTERESTS

- Ai4Science, Deep learning, Electrocatalysis for water splitting, Photocatalytic CO<sub>2</sub> reduction, Advanced nanomaterials for catalysis
- Battery management system

## RESEARCH PAPERS

1. **Min B.**, Yang L. and Zhang Z. M-MOFormer: Multi-Modal Transformer Framework for Metal-Organic Framework Property Prediction. *Thirty-Nine AAAI Conference on Artificial Intelligence (AAAI 2025, Workshop on AI to Accelerate Science and Engineering)*
2. **Min B.†**, Wu W.†, Li H., et al. NiFe-LDH coated NiSe/Ni foam as a bifunctional electrocatalyst for overall water splitting. *Reaction Chemistry & Engineering*, 2023, 8(7): 1711-1718.
3. Xue F., Guo X., **Min B.**, et al. Unconventional high-index facet of iridium boosts oxygen evolution reaction: how the facet matters. *ACS Catalysis*, 2021, 11(13): 8239-8246.
4. Wu W, Peng L, **Min B.**, et al. Activated overall water splitting over a Ni-Fe layered double hydroxide electrocatalyst by V doping and sulfuration. *Applications in Energy and Combustion Science*, 2023, 14: 100148.
5. Liu M, Chen G, **Min B.**, et al. Photocatalytic co2 reduction[J]. *Solar-to-Chemical Conversion: Photocatalytic and Photoelectrochemcial Processes*, 2021: 243-267.

## RESEARCH EXPERIENCE

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| <b>1. Multi-Modal Transformer Framework for Metal-Organic Framework Property Prediction</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>2024.01 - 2024.11</b> |
| <ul style="list-style-type: none"><li>• Developed M-MOFormer, a novel multi-modal transformer framework that integrates SMILES representations and automatically generated 2D structural diagrams through a self-developed openchemlib-MMOF package, significantly advancing the field of structure-agnostic MOF property prediction.</li><li>• Designed and implemented a dual-pathway transformer architecture featuring cross-modal attention mechanisms to effectively combine structural information from both textual and visual modalities, achieving superior prediction accuracy compared to existing structure-agnostic approaches while maintaining computational efficiency.</li></ul> |                          |

- Open-sourced a comprehensive multi-modal MOF prediction dataset and validated the framework's effectiveness through extensive experiments on two public datasets (QMOF and hMOF), demonstrating 7-11% improved prediction accuracy over state-of-the-art baselines while providing interpretable insights into structure-property relationships.

## 2. Synthesis of Multielemental Transition Metal Chalcogenides for Electrocatalytic Water Splitting

2021.04 - 2022.06

- **2.1 Synthesis and Electrocatalytic Performance of Ternary Transition Metal Sulfide NiFeV-S/NF**
  - \* Developed a ternary transition metal sulfide NiFeV-S/NF catalyst via a two-step hydrothermal synthesis method to address the limitations of NiFe-LDH catalysts.
  - \* Demonstrated superior electrocatalytic activity with overpotentials of 211 mV and 127 mV for OER and HER respectively, at a current density of  $10 \text{ mA cm}^{-2}$  in 1 M KOH.
  - \* Fabricated a NiFeV-S/NF//NiFeV-S/NF electrolyzer for overall water splitting, demonstrating outstanding performance with a low cell voltage of 1.573 V at  $10 \text{ mA cm}^{-2}$ .
- **2.2 Synthesis and Electrocatalytic Performance of NiSe@NiFe-LDH/NF Heterojunction Catalyst**
  - \* Conceptualized and fabricated a novel core-shell heterostructured bifunctional electrocatalyst (NiSe@NiFe-LDH/NF), combining the high conductivity of NiSe with the catalytic activity of NiFe-LDH.
  - \* Achieved exceptional electrocatalytic activity in alkaline conditions, used as both cathode and anode for electrocatalytic water splitting requiring only 1.560 V to deliver a current density of  $10 \text{ mA cm}^{-2}$ , surpassing the performance of previous catalysts.
  - \* Conducted long-term stability tests to verify the durability enhancements provided by the core-shell architecture, contributing to the design of efficient and stable non-noble metal bifunctional catalysts.

## 3. Rational Design of Co-Cu/TiO<sub>2</sub> Photocatalyst for Efficient CO<sub>2</sub> Conversion via MOF-Templated Synthesis

2017.10 - 2019.03

- Developed a MOF-templated synthesis strategy using MIL-125(Ti) to fabricate hierarchically porous Co-Cu co-doped TiO<sub>2</sub> photocatalyst with precisely controlled surface composition and morphology.
- Elucidated the synergistic effect of Cu and Co dopants on charge carrier dynamics: Cu facilitates efficient photogenerated electron capture and separation, while Co acts as a hole trap and promotes H<sup>+</sup> intermediate formation, enhancing C<sub>2</sub>+ product selectivity.
- Demonstrated superior photocatalytic performance in CO<sub>2</sub> reduction with H<sub>2</sub>O, achieving high selectivity towards value-added C1-C3 products (CO, CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, and C<sub>3</sub>H<sub>8</sub>) under simulated solar irradiation.

## AWARD

---

- First Prize, Eastern China Region, 2nd National Undergraduate Chemical Engineering Experiment Competition
- President's Scholarship, Southeast University (Top 1%)
- Dalian Institute of Chemical Physics Scholarship (Top 5%)
- Jiangsu Electric Power Scholarship (Top 5%)
- Special Academic Scholarship, Xi'an Jiaotong University (Top 10%)

## ENGLISH & GRE TESTS

---

- **GRE General Test:** Quantitative: 170 Verbal: 160 Analytical Writing: 4.0, Test Date: September 9, 2024
- **IELTS:** 6.0, 2023

## Skill

---

- **Proficient in operation and data analysis:** TEM, SEM, XRD, FTIR & UV-vis spectroscopy
- **Familiar with basic functions:** Aspen Plus, 3D MAX, ChemDraw, Origin
- **LLM Tools:** GPT-4, Claude 3.5, Research productivity enhancement, Coding assistance